
Financial Virtual Machine

Alexander Angel Waylon Jepsen Colin Roberts Estelle Sterrett

March 1, 2023

This is a living document. This print’s version is: v0.1.0

Abstract

This document descibes the design implications of building a

Finite State Machine (FSM) with its own opcodes on top of

the Ethereum Virtual Machine (EVM). We examine this de-

sign pattern in the context of Decentralized Finance (DeFi) in

what we call the Financial Virtual Machine (FVM). The FVM

is designed to be a general purpose FSM that can be used to in-

teract with variety of financial primitives. Also, it provides an

interface over atomicity and the ability to reason about pro-

gram correctness. In particular, FVM enables users to take

multiple actions on their portfolios within an single commit

to Ethereum. The individual transactions in FVM can also ac-

crue transient debt, but no lasting debt will be written to the

blockchain due to the validation of state after processing. For

example, rebalancing an arbitrary amount of positions can be

done atomically which drastically simplifies both the design

and removes the need for signing multiple transactions. The

FVM is a critical component of Primitive’s Portfolio proto-

col, which builds on top of Constant Function Market Maker

(CFMM) Liquidity Provider (LP) positions.

1 Introduction

Portfolio is a modular system that provides efficient decen-

tralized financial infrastructure for portfolio management. It

consists of two main components, a virtual machine known

as Financial Virtual Machine (FVM) designed with internal

accounting and execution logic, coupled with agnostic sup-

port for Constant Function Market Maker (CFMM) trading

functions. By using the two components together, Liquid-

ity Providers (LPs) gain capabilities of allocating to a variety

of portfolios, all while allowing atomicity for CFMM transac-

tions. It is also possible to use the accounting to serve as a

means to rebalance portfolios and route swaps across pools;

both can be done in aggregate.

Section 2 covers the FVM’s functionality, implementation,

and examples. We can apply some of these techniques in or-

der to scale orderflow and provide some new features to the

Decentralized Exchange (DEX) space. Then in Appendix A

we will also discuss further theory on Automated Market

Makers (AMMs), their payoffs, and their associated liquidity

distributions in order to motivate future work.

2 Financial Virtual Machine

We examine constructing a Virtual Machine (VM) on top of

the Ethereum Virtual Machine (EVM) Instruction Set Archi-

tecture (ISA) (set of opcodes) with specific interest in Decen-

tralized Finance (DeFi) applications. Programming languages

such as Solidity are an interface for the EVMs ISA that ul-

timately are compiled into the machine bytecode. Since the

EVM is a stack machine, bytecode is executed iteratively by

the EVM when a block is validated. The block is then sent

as a commit to Ethereum so that the resultant world-state is

updated from the transactions in the block. Note that transac-

tions are not committed to Ethereum as a single transaction,

but rather a set of transactions that are executed atomically

given their approval of Ethereum’s state transition function.

The atomicity of applications on the EVM can be handled

in many different ways. For example, layer-2 protocols such

as Arbitrum, Optimism, ZK-Sync, and Aztec are built on top

of the EVM and rollup transactions into a single atomic com-

mit to Ethereum. We show another example of how to extend

atomicity by constructing a VM on top of the EVM that has its

own state transition function. To execute Ethereum opcodes

atomically, we must constrain our computation to reside in

a single EVM commitment or transaction. These machines

can use Ethereum’sworld-state as read-only-memory and can

only write to the world-state when the machine halts upon

valid execution that Ethereum can accept. That is, Ethereum’s

memory can be rewritten only when both the VM halts and

the VM is in a valid state. This section will introduce the con-

cept of VMs on top of Ethereum and describe our implemen-

tation of the FVM.

2.1 Background on State Machines

To discuss the topic more formally, let us introduce a few no-

tions on state machines. First, we are interested in building

on top of the EVM which is a quasi-Turing complete machine

[11]. Note that Ethereum’s gas limit imposes execution to halt

once a certain amount of computation is performed, hence

quasi-Turing complete. Our implementation will be a Finite

State Machine (FSM) that bootstraps execution from EVM.

Formally, a FSM is a defined as {S , I ,O, ν, ω, andF } such

that

• S is a non-empty finite set of states.

• I is a non-empty finite set of inputs.

1



2.2 Theory 2 FINANCIAL VIRTUAL MACHINE

• O is a non-empty finite set of outputs.

• ν is the state transition function ν : S × I → S .

• ω is the output function ω : S × I → O.

• F is a set of final states.

FSMs are a simple model for computation. Turing ma-

chines are more powerful than FSMs, but they are also more

complex. A CPU has a finite amount of inputs, outputs, and

states and thus can be modeled as a FSM. However, a com-

puter as a whole has infinite internal interactions that can be

modeled as an unbounded machine or Turing machine. Fur-

thermore FSM’s can provide a contraint system that allows

for only certain state transitions to occur. This makes it is

easier to reason about correctness.

2.2 Theory

There are many common financial transactions that can be

modeled as a FSM. Furthermore, Ethereum provides the most

primitive environment that natively enables transfer of value

via token. This lets us build further abstractions of financial

transactions as a FSM on top of Ethereum. Our canonical ex-

ample will be that of a DEX where users can provide and re-

move liquidity or swap one basket of tokens for another.

Innovations in DeFi have shown that there are some

unique implications of transaction atomicity when making

commits to the EVM. One classic example is flash loans which

are used for arbitrage. Without verifiable transaction atomic-

ity [6], atomic multi-leg arbitrage requires users to maintain

a large amount of funds. Atomicity is an essential concept for

Portfolio because it allows traders to wrap multiple financial

transactions into one atomic commit to Ethereum. Portfolio

leverages the FVM to provide internal accounting across all

liquidity pools. Succinctly, we will sequentially execute many

FVM opcodes for every Ethereum commit and define our own

rules for valid state transitions.

First, let us define the FVM as a FSM such that:

• S is a collection of all CFMM pool states and a single

user portfolio.

• I is an (infinite) collection of all strings of FVM op-

codes.

• O is a single user’s portfolio value.

• ω is the output function ω : S → O.

• ν is the state transition S × I → S .

• F is the (finite) set of final valid states given by the

constraint of ν.

Most importantly, the ν for the FVM requires that the

portfolio value is invariant after the aggregated execution of

all FVM opcodes specified by the inputs i:

ν(s, i) = sf iff ω(sf ) = ω(s). (1)

The state s of pools and a single user’s portfolio is loaded from
the EVM’s world state.

To build an instruction set that satisfies the above con-

straints of a FSM with Solidity, the state of the FVM must

be transient. Transient storage is a design put forward in

EIP-1153 [2] that enables a in-transaction temporary mem-

ory. The EIP preposes two additional opcodes for reading and

writing to temporary non persistant storage. This design con-

cept exposes an interface of execution atomicity that can be

leveraged in a number of ways. As an EIP, transient storage

was preposed in 2018, but it has not been implemented in any

forks. Our implementation achieves similar functionality to

EIP-1153 by implementing a function to loop through jumps.

The pool and user portfolio states s are fetched as read-

only from outside our FSM from the EVM. Immediately, we

can determine that the set of states S and outputsO are both

singletons containing just the user and pool data s and the

portfolio value ω(s) respectively. Once this has happened,

the FVM is given inputs that can modify the state and hold

the mutated state in transient memory and not as a commit to

Ethereum. In essence, the state transition function and out-

put function are independent of the choice of state s ∈ S .
Once the string of opcodes i ∈ I are exhausted by the FVM,

the output mapping ν is applied to the final mutated state sf .
Using our condition in Equation (1) we yield a binary output{

Valid, ν(s, i) |= ω(sf ) = ω(s)

Invalid, ν(s, i) ̸|= otherwise.
(2)

The requirement for validity sf defines the set F . In effect,

the validity of ω(s, i) requires that the user cannot change

their portfolio’s value by engaging with the Portfolio proto-

col. Given that ω(s, i) is valid, the FVM can attempt to com-

mit the mutated state s′ to the EVM as a single atomic trans-

action where Ethereum’s state transition will also be verified.

These invariants ensure that Portoflio does not allow a user

to accrue irrecoverable debt. However, it is important to men-

tion that users may alter the portfolio values of other users,

but their states are not loaded into the machine for execution.

Also, FVM does hold instances of temporary mutated

states s′, but these states are transient. This construction re-

sults in a fully functional transient FSM on top of the EVM.

The properties of the state transition ν ensure the correctness

of computation as long as the single system invariant is sat-

isfied. Note that FVM is not Turing complete.

2.3 Implementation

One can think of the system invariant given by Equation (2)

as a way to ensure the solvency of the protocol. This machine

consists of basic opcodes that are to be ran with Portfolio pool

objects. The purpose of these instructions is to provide a way

to execute multiple financial transactions, any one of which

may require transient debt for a user. By doing so, we get the

benefits of atomicity and transactional efficiency.

The FVM abstracts the token accounting for native net-

work currencies (e.g. Ether), ERC20 tokens, and liquidity po-

sitions all into the Portfolio contracts. Along with the ac-

2



2.3 Implementation 2 FINANCIAL VIRTUAL MACHINE

counting system, the FVM implements the data structures for

the CFMM’s curves, token pairs, state of pools, and liquid-

ity positions. Finally, FVM handles the execution of orders

through a single order “process” method and a multi-order

“jump process” method. These processes expect to receive an

a string of FVM instructions i ∈ I , which, in our case, is a

single byte representation of an operation for the machine to

process. The individual instructions that FVM can string to-

gether are given in Table 1.

Instruction Bytecode

UNKNOWN 0x00
ALLOCATE 0x01
UNSET02 0x02

DEALLOCATE 0x03
CLAIM 0x04
SWAP 0x05

UNSET06 0x06
UNSET07 0x07
UNSET08 0x08
UNSET09 0x09

CREATE_POOL 0x0B
CREATE_PAIR 0x0C

UNSET0D 0X0D
INSTRUCTION_JUMP 0xAA

Table 1: The different instructions for the FVM.

The instructions can be summarized as follows:

UNKNOWN: This is the default opcode. It is used to represent

an unknown opcode, and is used to initialize the FVM’s state.

ALLOCATE: This instruction is used to add liquidity to a

pool. It maintains invariant pricing for each pool that is in-

teracted with.

DEALLOCATE: This instruction is used to remove liquidity

from a pool. It maintains invariant pricing for each pool that

is interacted with.

CLAIM: Collects all the fees generated from a positive in-

variant for (i.e., only if overreplicating, see Appendix A.2.1).

SWAP: This instruction is used to swap between the tokens

of a pool. It maintains the invariant of the trading curve.

CREATE_POOL: This instruction is used to create a new pool.

Initially, pools are not deployed with any capital, but are de-

ployed with parameters for the CFMM as well as an initial

price.

CREATE_PAIR: This instruction is used to initialize a new

pair of assets for which pools can be created.

INSTRUCTION_JUMP: This instructions is used to jump to a

different instruction in the FVM’s state via FVM’s pointer.

UNSETXX: This instruction is not in use at the moment but

can be implemented later.

The state for any user consists of any of their current

positions, their token balances, and the current state of the

pools they interact with. For a quick example, let the user u
have with public address Addressu and a position in a pool

p ∈ Pool which we call LPTp, a balance of x Token X , and

a balance of y of Token y, the state loaded from the EVM is

s =


Addressu
LPTp

x
y

Pools

 . (3)

Note that x and y are the balances for the user in Portfolio

that were added outside of FVM.

Pools themselves have their own state (discussed in Ap-

pendix A.1) which consist of reserves R, trading function

φ, and any parameters the trading function may need (e.g.,

strike, expiry). These parameters must be stored in the on-

chain state of the contract, so they can be loaded prior to

performing actions from inputs to FVM. FVM has four data

structures to hold these three key groups of information: a

token pair (Pair), a parameter set (Curve), state of a liquidity

pool (Pool), and a liquidity position (Position). There are two

operations to instantiate these pieces of data: CREATE_PAIR,
CREATE_POOL. Positions are mapped using the owner of the

position and the pool ID which is created after executing

ALLOCATE. Pairs and pools use a nonce-based method to in-

crement their ID to reference their data. Pairs have an ID

number up to three bytes in size, for example the first pair

created has an ID of 0x000001, the second has 0x000002, etc.
For pools, it’s the same, but up to eight bytes.

We can then allow the user to provide their own inputs

i ∈ I to the FVM that can modify the state s. For example,

if the user wants to deallocate liquidity from pool p, swap on

pool q to get the correct ratio in order to allocate liquidity into
new pool r we can put

i =


DEALLOCATE:[LPTp]
SWAP:[x0, q ∈ Pools]

CREATE_POOL : [φ,P, r ∈ Pools]
ALLOCATE:[x1, y1, r]

 (4)

Notice that in i, the user may take on transient debt before all

opcodes have been executed.

Recall that after applying ν to the state s and inputs i,
must not change in order to confirm validity. If the portfolio

value does change, the instructions will revert and signal an

invalid commit to Ethereum. Do remember that a user’s port-

folio value may change, but not from their own interaction

with pools (except for the accounted loss or gain from fees

paid to LPs).

Using this low level machine, the logic of the CFMM is

implemented in the Portfolio smart contract, but executed by

FVM’s methods. Portfolio implements the logic for creating

pools, adding or removing liquidity from them, and swap-

ping between the tokens of the pool. Since each transaction

maintains invariant portfolio value via CFMM invariants and

verification that the user does not take on lasting debt. Of

3



2.4 Orderflow with FVM 2 FINANCIAL VIRTUAL MACHINE

course, the accounting to handle fees which do represent an

accounted decrease of a swappers portfolio value that add the

relevant LP’s portfolios. Once that is assured, the transaction

is committed to Ethereum’s on-chain state.

All transaction data should begin with the four byte func-

tion selector for the multiprocess instruction opcode. This

is different from the standard way to interact with Ethereum

smart contracts, which usually use the first four bytes of the

keccak256 hash of the target function’s signature [11]. To

summarize, no functions other than the multiprocess func-

tion are being called on Portfolio protocol, only data in the

form of FVM opcodes is sent directly to the smart contract.

The ID of the pool is the combination of both those ID

nonces, e.g. 0x000002 01 00000001, where pairNonce/pairId
is 3 bytes, 1 byte for isMutablePool, 4 bytes for poolNonce.

Creating pools does not require the user to pay for the initial

liquidity, but does require a price to be set.

2.3.1 Processing and Encoding

To process a transaction, we need a way of inputting byte-

code to the FVM and storing state. The Portfolio contract

will receive a message from the user and will trigger the con-

tract’s custom multiprocess function. The message will be a

sequence of bytes b0b1 . . . bn.
Inside of custommultiprocess is a call to the jumpProcess

method on the FVM. This call will check the first byte for 0xAA
(INSTRUCTION_JUMP opcode) and, if not there, then it will exe-
cute the relevant existing opcode. Themessage is passed on to

the FVM and the FVM executes the bytecode using a pointer,

e.g., we reference a byte in the message by bpointer. Messages

are processed serially and the pointer is incremented. An oc-

curence of the JUMP-INSTRUCTION instruction can be used to

jump to the pointer location of the next FVM instruction. The

message is processed and decoded into a sequence of instruc-

tions to be comitted to Ethereum. If the message begins with

an JUMP_INSTRUCTION, the FVM will jump to the instruction

at the pointer. From there, we call the processmethod on the

FVM to execute the bytecode.

We can use the FVM contract as an interface in order to

create instruction messages. For each of the FVM instruc-

tions, there is a corresponding encode and decode function.

The encode functions take in the parameters for the instruc-

tion and return a byte array while the decode functions invert

this process and revert on invalid byte strings. To make mes-

sages more compact after encoding each instruction, we use

a reverse run-length encoding scheme.

2.4 Orderflow with FVM

Given the way that FVM abstracts accounting, we can use this

interface to implement a flash loan pattern in which collater-

alization is always ensured and transactions revert when a

condition is not met. This provides us a way in which we can

improve orderflow without having to worry about the col-

lateralization of the protocol. Also, this gives users a way to

perform a sequence of transactions without having to sign for

each individual one.

There are future directions to consider with FVM. For in-

stance, pools over the same pairs can be aggregated in the

transient state of FVM. This would allow for simpler order

routing and better execution prices on swaps as well as im-

proved portfolio replication. Specifically, with bounded pay-

offs we can combine liquidity distributions and generate an

aggregate trading curve that represents both pools simulate-

nously and integrate further accounting into FVM.

By doing this, we can route across both pools and unify

liquidity. In effect, FVM can be used to quote a single price

per pair and abstract away the notion of individual pool swap-

ping. This makes the protocol more scalable and allows us to

have a simpler swap interface. These routing features are not

yet implemented, but are in development.

4



REFERENCES A AUTOMATED MARKET MAKING

References

[1] Adams, H., Zinsmeister, N., Salem, M., Keefer, R., and

Robinson, D. Uniswap V3 Core.

[2] Alexey Akhunov, and Moody Salem.

EIP-1153: Transient storage opcodes.

https://eips.ethereum.org/EIPS/eip-1153, 2018.

[3] Angeris, G., Agrawal, A., Evans, A., Chitra, T., and

Boyd, S. Constant FunctionMarket Makers: Multi-Asset

Trades via Convex Optimization. 31.

[4] Angeris, G., Evans, A., and Chitra, T. Replicating

Market Makers, Mar. 2021.

[5] Angeris, G., Evans, A., and Chitra, T. Replicating

Monotonic Payoffs Without Oracles, Nov. 2021.

[6] Chandler, B., Stiles, P., and Blinken, J. DeFi Flash

Loans: What ’Atomicity’ Makes Possible - Why Does

This Innovation Not Already Exist in Traditional Fi-

nance? SSRN Electronic Journal (2022).

[7] Milionis, J., Moallemi, C. C., Roughgarden, T., and

Zhang, A. L. Automated Market Making and Loss-

Versus-Rebalancing. 21.

[8] Natolski, J., and Werner, R. Mathematical analysis of

different approaches for replicating portfolios. European
Actuarial Journal 4, 2 (Dec. 2014), 411–435.

[9] Sterrett, E., Angel, A., Czernik, M., and experience.

Primitive whitepaper. PrimitiveXYZ (2021).

[10] Sterrett, E., Jepsen, W., and Kim, E. Replicating Port-

folios: Constructing Permissionless Derivatives, June

2022.

[11] Wood, D. G. Ethereum.

A Automated Market Making

In this section, we will discuss automated market making via

CFMMs in decentralized networks, i.e., DeFi. AMMs are a so-

lution in DeFi that addresses orderflow, price discovery, and

exchange of assets autonomously. We will specifically fo-

cus on CFMMs which source their liquidity from LPs. LPs

in CFMMs are positions that replicate some portfolio outlook

and they can earn fees on swaps on the CFMM. Using CFMMs

to achieve portfolios is a beneficial tool in DeFi since it re-

places the need of manually rebalancing a portfolio. Instead

of having to manually replicate a portfolio via rebalancing,

one can simply provide liquidity to a CFMM pool and earn

the payoff of the portfolio autonomously. Primitive’s Portfo-

lio is designed to facilitate this type of liquidity provisionr.

One way to describe portfolio allocation is by the study-

ing the entire space of portfolios that any particular collection

of AMM LP positions could provide. The collection of such

LP portfolios are in correspondence with Replicating Mar-

ket Maker (RMM) which were described by [5]. We are not

limited to static RMM pools, but can also consider dynamic

RMMpools that can be updated over time or other conditions.

One such example that we have implemented is an RMM that

replicates the payoff of a Black-Scholes European covered call

option. We will refer to this RMM position as RMM-CC. Note

that RMMs such as RMM-CC are able to achieve the payoff is

via arbitrage against the corresponding CFMM pool.

Lastly, we can think of RMMs with bounded portfolio val-

ues nicely in terms of their liquidity distributions. By liquid-

ity distributions we mean the amount of open order density

that is available at each price point. This is partially moti-

vated by the notion of concentrated in UniswapV3 [1]. Using

this framing, we can combine liquidity distributions simply

and view time-varying RMM positions as a dynamic way to

allocate concentrated liquidity.

A.1 CFMM Background

At the moment, most DEX fall under the classification of

CFMMs. The CFMM acts as a direct counterparty to every

trade submitted on supported trading pairs. This, of course,

means CFMMs must maintain reserves of each supported as-

set deposited by LPs, as well as provide a price for every sub-

mitted trade.

Suppose we have a collection of n tokens that can be

exchanged for another. The reserves of n assets R ∈ Rn
+

is called an n-asset liquidity pool where for every i ∈
{1, . . . , n}, the quantity Ri represents the quantity of asset

i in the pool. Reserves change when trades are executed.

Let ∆,∆′ ∈ Rn
+ be the tendered basket and received

basket, respectively. We refer to the tuple, (∆ ,∆′) ∈ Rn
+ ×

Rn
+, as a proposed trade. Specifically, ∆i and Λi denote the

amount of asset i tendered. Fees are typically applied to the

tendered basket and they are ameans of incentivizing users to

provide liquidity. We define the fee as a parameter γ ∈ (0, 1].

Definition A.1. A Constant Function Market Maker (CFMM)
is an n-asset pool Rn

+, and a trading function φ

φ : Rn
+ → R. (5)

Given any R, the value φ(R) = k is called the invariant.

CFMMs have two independent actors. Actors who tender

a basket of assets ∆ in order to receive a nonzero basket ∆′

are swappers. Actors who provide those assets that can be

swapped are called the LPs. Let us first discuss swappers.

Definition A.2. Let (∆,∆′) ̸= 0, then this trade is a valid
swap if

φ(R+ γ∆−∆′) = φ(R). (6)

Graphically, Definition A.2 dictates that valid swaps move

reserves along the invariant set where φ = k. An illustration

of these curves is given in Figure 2 for RMM-CC at various

times. Note that when γ = 1, the swapper is simply paying

∆ in order to receive ∆′
. In the case that γ < 1 (which is

5



A.2 Replicating Portfolios and RMMs A AUTOMATED MARKET MAKING

typical), the trade is accepted based on the discounted ten-

dered basket, γ∆, but the reserves are still increased by the

full∆. This remainder (1− γ)∆ serves to increase the value

the LP’s share of the pool which we call a Liquidity Provider

Token (LPT).

Since the trading function gives a method for calculating

exchange quantities, it also in turn, provides a means to com-

puting marginal prices of each token in a CFMM. That is, the

condition for a valid swap Equation (6) allows us to determine

both the relative marginal prices of each asset and the portfo-

lio value of an LP. For us, we will follow [3] and let our n-th
asset be the numeraire.

Definition A.3. Given a CFMM the price vector is

P := ∇φ, (7)

the reported price of asset i is

pi :=
Pi

Pn
, (8)

and the value of the reserves is

V (R) :=
1

Pn
P⊤R. (9)

It should be noted that while this price only depends on

the CFMM’s reserves, it will generally track the wider market

prices of each asset pairs by virtue of arbitrage. In general, for

a given trading function φ, the reservesR can be determined

from P . For the two token case, we will write the price S =
p1 and denote reserves of TokenX and Token Y as a function

price by Rx(S) and Ry(S).
Further, we see that the portfolio value for a LP can be

written in terms of the price as well, i.e., by the composition

V (R(P )). We may, with abuse of notation, just put V (P )
or V (S) in the case of two tokens. Note, that while the rela-

tionship of trading functions to portfolio value is simple, the

inverse is much less direct and requires the use of convex op-

timization. This is exactly the idea of RMMs studied in [4].

Next, let us discuss LPs in more depth. LPs tender assets

to a pool in exchange they receive a quantity of LPTs repre-

senting their share of pool ownership. The LPT can always

be exchanged for reserve assets if an LP wishes to exit their

position. Upon exiting, an LP receives a basket ∆′
for their

LPT. Their share is defined by their initial tendered basket∆
and the accumulated swap fees. We refer to the actions an LP

performs as liquidity changes.
Swappers and LPs have a symbiotic relationship so long

as γ ̸= 1. For any swap (∆,∆′) there will be (1−γ)∆ placed

into the pool which increases the amount of the underlying

tokens that an LPT is worth. Also, in CFMMs, the reported

price is updated through arbitrage (informed swaps). This

mechanism finances the portfolio for certain RMM positions.

For more information, see Appendix A and [5, 9].

A LP executes a trade of the form (∆, 0) or (0,∆′) that
does not modify the pool’s price. Specifically, LPs must pro-

vide or remove liquidity along directions that preserve the

gradient of the trading function.

Definition A.4. A valid liquidity change is a trade (∆, 0) or
(0,∆′) such that

p(R) = p(R+∆) = p(R−∆′) (10)

Since the LP maintains a constant share of the pool, the

LPT is always worth some amount of reserve assets. There-

fore, we can use Equation (9) to define the value of the LPT

as a function of the reserves corresponding to their amount

of LPTs.

ExampleA.1. As a brief example, a limit order can be built as

a collection of 2-token CFMMs with a trading function called

a constant sum trading function. We define a generic constant

sum trading function by

φcs(R) = PxRx + PyRy = P TR, (11)

such that Px, Py ∈ R+. The constant sum trading function

dictates that valid swaps only execute at a single reported

price which is akin to a limit order. The constants P1 and

P2 define the price S0 by

S0 :=
∂1φcs

∂2φcs

=
P1

P2
(12)

where ∂i is the partial derivative with respect to the ith re-

serve.

Assuming competitive arbitrage, valid liquidity changes

will add only Token X or Token Y to the pool depending on

some external market price S. If S > S0, then the LP will add

Token X to the pool and if S < S0 they will add Token Y .

The case where S = S0 would not be long lasting, as active

trading will move the price S.

A.2 Replicating Portfolios and RMMs

Replicating portfolios have been a subject of study in quanti-

tative finance for some time [8]. Due to the autonomous na-

ture of DEXs, portfolio replication can be done natively with

CFMMs. RMMs introduced the ability to map from some tar-

get portfolio value function to an associated trading function.

This mapping is achieved via convex optimization and the so-

lutionmaps portfolio value functions to trading functions that

replicate this portfolio to their LPs [5]. The RMM result yields

a robust framework to constructing replicating portfolios on-

chain.

Formally, given any concave, non-negative, non-

decreasing portfolio value function V , there exists a CFMM

trading function φV . The problem for φV is to solve the

following optimization problem:

φV (R) = inf
c

(
c⊤R− V (R)

)
. (13)

The above provides a realization of a map V 7→ φV . To sim-

plify notation, we will denote this mapping by rmm(V ) =
φV and note that this association is Fenchel conjugacy. The

inverse mapping to the rmm was given earlier by Defini-

tion A.3, i.e.,

V = ∇φ⊤. (14)

6



A.3 Liquidity A AUTOMATED MARKET MAKING

A.2.1 RMM-CC

One example of a portfolio value function is the Black-Scholes

value function for a European call option between a pair of

assets. If we denote the Black-Scholes value function by VCC,

then the associated trading function is given by

φVCC
(Rx, Ry) = Ry −KΦ(Φ−1(1−Rx)− σ

√
τ) = k (15)

where Φ is the cumulative distribution function (CDF) of the

standard normal distribution, σ is the volatility of the under-

lying asset, τ is the time to maturity, andK is the strike price

of the option. We refer to the above trading function asRMM-
CC. Note that RMM-CC was originally defined in [4]. The in-

variant given by the value k can be interpreted as the pool’s

replication status. If k = 0, then the pool is perfectly repli-

cating the covered-call payoff. The case k < 0 and k > 0
refer to under and over replication of the covered-call payoff,

respectively.

Looking at Equation (15) we can note thatRx ∈ [0, 1] and
Ry ∈ [0,K] when k = 0. In order to allow for an unbounded

amount of liquidity to enter the pool, we must normaliza the

total X reserves to be in the range [0, 1]. That is, we must

normalize the pool reserves at each deposit/remove event.

To perform normalization we must know how much of

each asset each LPT contains. For an existing pool this is sim-

ply looking at the pre-existing normalized quantities. At the

start of a pool’s creation, we must specify the marginal price

of the curve. This, in turn, sets the quantity of each asset an

LPT should represent, call these quantities x0 and y0.
If there are N shares already in the pool and we seek to

add/remove enough such that there would be N ′
shares left,

we must renormalize reserves again:

Rx

N
=

R′
x

N ′ = Rx0
(16)

where Rx0
is the normalized quantity of X that each LPT

should represent. These normalized quantities are used for

all calculations in place of the raw reserve quantities. We can

visualize fractional shares of the RMM-CC LPT by Figure 1.

For the rest of the derivations for simplicity, however, we will

act as though there is only 1 LPT in the pool. Next we turn to

the implied marginal pricing function.

It is important to remark that the RMM-CC trading func-

tion changes over time. In the implementation, the time up-

date is applied only when swaps occur. This time variance

of the trading function is necessary for the portfolio value to

change just as the option would when it nears expiry. We can

see this graphically in Figure 2.

Using Definition A.3 we can get the price of the RMM-CC

pool as

S(Rx) = KeΦ
−1(1−Rx)σ

√
τ−σ2τ

2 (17)

Note that Ry is not needed to compute the price of the pool

as Ry can be implicitly computed from Rx and the invariant.

Also, while this price is supported on R+
, prices near the ex-

tremes of the scale are practically unachieavable due to the

nature of the dependence on the standard normal distribution.

In a sense, there is drastically reduced trade liquidity near the

extremes, so while in theory it is possible to trade there, it is

not practical especially in the case of discrete prices.

Once again, we can use Definition A.3 to see that the port-

folio value associated to φVCC
is that of a Black–Scholes cov-

ered call. Upon rearranging and isolating for Rx(S) and in

turn Ry(S), we obtain the portfolio value

V (S) = S(1− Φ(d1)) +KΦ(d2) + k (18)

where

d1 =
log (S/K) + (σ2/2)τ

σ
√
τ

(19)

d2 = d1 − σ
√
τ . (20)

The difference between V and the Black–Scholes covered call

value is exactly invariant term k. Hence why we refer to per-
fect portfolio replication as k = 0. However, the portfolio

of a covered call is not self-financing (requires external fund-

ing to pay the equivalent of a call premium over time). This

means without an additional income structure, we will see a

decrease in k over time by exactly the value of the accumu-

lated call premium by expiry.

One means for closing this replication error would be to

implement a swap fee on the trading function. As time til ex-

piry decreases, the pool will report decreasing prices as well.

Hence, the pool will incentivize arbitrage even if reference

markets prices are static. Primitive did extensive work using

Python simulations to show that a properly optimized swap

fee was sufficient in probabilistically reducing this error [10].

These results are based on a minimum expected trade volume

and lead to a wide range of potential fees based on this as-

sumption. We do, however, see an outperformance in some

cases where observed trade volume exceeds expectation.

Being an onchain implementation of a covered call with

minimal trust dependencies, we can use the LPT as a robust

building block for other replicating portfolios. As shown in

[10], we can use our LPT to achieve everything from long

options, to binaries, to more complicated structured prod-

ucts such as liquidation-free lending. These action are possi-

ble with other CFMM implementations as well, however, due

to the clean and bounded nature of a covered call portfolio,

RMM-CC serves as a simpler building block for now.

A.3 Liquidity

There is a large body of research around the connection be-

tween CFMMs and the portfolio value of their LPTs, but there

is less written on the connection with the order books or liq-

uidity distributions. This fact explains the emphasis on using

CFMMs to achieving a specific portfolio value. However, we

can, at least in the case of bounded payoffs, think of CFMMs

as a method to dynamicaly allocate concentrated liquidity.

UniswapV3 is a good example of this, where the liquidity is

concentrated over discrete price ticks.

Let us define a notion of liquidity based on trade depth

that allows us to allocate to CFMMs based on our desired dis-

tribution. This functionality allows one to passively imple-

7



A.3 Liquidity A AUTOMATED MARKET MAKING

Figure 1: Fractional liquidity positions represented as curves.

ment an expectation on price action and earn fee income ac-

cordingly, with minimal need for manual re-balance events

requiring action. For now, we will only consider the two to-

ken case, but similar same logic applies to n > 2 tokens. It

will also be possible to convert from CFMM to liquidity dis-

tributions.

First, we can define depth as the swap quantity required

to move the price of the pool up dp. Intuitively, we can think

of depth in this case as a density of open orders in an contin-

uous limit order book. We will assume that we are tendering

an amount∆y and receiving∆x in order to change the price.

Note that we can always determine a ∆x(S) due to the con-

vexity of φ. Assuming this is a sufficiently smooth trading

function, we can define our depth as

l =
d∆x

dS
(21)

This definition is a measure of trade size required to move

the price upwards by dS We can recover the Rx reserve by

integrating:

Rx(S) = Rx0
−∆x = Rx0

−
∫ S

S0

l(p)dp (22)

where S0 = S(Rx0). We can now apply [7, Lemma 1], which

states that V ′(S) = Rx(S). Thus to recover a portfolio value
function, we need to integrate one more time:

V (S) =

∫ S

S0

(
Rx0

−
∫ w

S0

l(p)dp

)
dw (23)

Given [5], we can recover the trading function via φ =
rmm(V ).

Note this construction works in reverse too. That is, given

a trading function one can determine the associated liquidity

distribution. Its worth mentioning, however, that this defini-

tion of liquidity has differing implications depending on the

type of curve or distribution being represented. For example,

a trading function with an finite total depth L given by

L =

∫
R+

l(S)dS (24)

will have a bounded portfolio value function. Hence, trading

functions with finite depth cannot support unbounded port-

folio value functions. Whereas vice versa also applies: if the

total depth is infinite, the portfolio value function will be un-

bounded. An example of bounded and unbounded payoffs

are RMM-CC and the geometric mean market maker, respec-

tively.

Example A.2. Note that the portfolio value for perfect repli-
cation of RMM-CC is bounded above by strike priceK times

the number of LPTs (i.e., the number of covered calls being

held). To compute l, we need trade size in terms of price. Us-

ing Equation (17), we can determine ∆x(S) as the inverse of
this function given some initial reserve quantity Rx0

. Doing

this yields:

∆x = Rx0
+Φ

(
log S

K + 1
2σ

2τ

σ
√
τ

)
− 1 (25)

8



A.3 Liquidity A AUTOMATED MARKET MAKING

Figure 2: Time changing trading curve for RMM-CC withK = 3 and σ = 1/2.

To get the liquidity distribution we differentiate to get

l(S, τ) =
1

Sσ
√
τ
ϕ

(
log S

K + 1
2σ

2τ

σ
√
τ

)
(26)

This can be seen in Figure 3 for various different times til ex-

piry. Also, the liquidity distribution happens to be the abso-

lute value of the covered call’s payoff Greek Gamma. Note

that the total depth L is finite and, moreover, L = 1. In the

limit as τ → ∞, we have that l(S, τ) → δ(S − K) where δ
is the Dirac delta distribution. That is, l(S, τ) is a Delta se-

quence.

Let us examine this further. Suppose we have L limit or-

ders for a tokenX at a priceK . Intuitively, we can model this

as providing liquidity at a single price point, i.e., a constant

sum trading function. The corresponding distrubition is then

given by Lδ(S − S0). Applying D−1
will yield the payoff of

a limit order of size L (or covered call at expiry).

We get D−1
by solving the following boundary value

problem {
DV = µ S ∈ R+

V (0) = 0 d
dSV (0) = 0.

(27)

For illustration, we will break our specific problem with µ =
Mδ(S−S0) into two boundary value problems that we solve

consecutively.

Solving the first problem we will recover a function we

denote by∆which you can think of as the Greek Delta of the

portfolio value we have{
−d∆

dS = Lδ(S −K)

∆(0) = 0
(28)

Note, ∆ in this example is not meant to collide with the no-

tation of the tendered basket! This problem is solved by inte-

grating to get

∆(S) = −
∫
R+

Lδ(S − S0)dS =

{
C S < S0

C − L S ≥ S0

(29)

and then using our boundary condition∆(0) = 1 to get C =
L and thus

∆(S) =

{
L S < S0

0 S ≥ S0

(30)

Next, we integrate another boundary value problem

dV

dS
= ∆(S) (31)

V (0) = 0. (32)

Using the process above, we would get

V (S) =

{
LS S ≤ S0

LS0 S > S0

(33)

Below in Figure 4 we plot the portfolio value of a limit

order of size L at price K .

9



A.3 Liquidity A AUTOMATED MARKET MAKING

Figure 3: Time varying liquidity distribution for RMM-CC withK = 3 and σ = 1/2.

Furthermore, we can quickly see that

M =

∫
R+

Mδ(S − S0)dS (34)

Notice that for non-singular distributions (the Dirac delta be-

ing singular), there will be no open orders at any S, but only
over a range of S values (this is a property of continuous mea-

sures).

By following similar work as in [5], we will find that the

corresponding trading curve to V is given by

φV (S) = Rx +
1

K
Ry = L. (35)

Visually, we can see this constant sum market as the τ = 0
case in Figure 2.

Example A.2 shows us that there exists a "commutative di-

agram" for compactly supported trading functions, bounded

sublinear portfolio value functions, and finite mass liquidity

distributions in the case of two tokens. This diagram is given

by Figure 5.

10



A.3 Liquidity A AUTOMATED MARKET MAKING

Figure 4: The payoff of a limit order of size L = 0.5 at priceK = 3.

Liquidity Distribution

Payoffs Trading Functions

D−1

D

rmm

V (R)

Figure 5: The diagram showing the relationships between liquidity distributions, trading functions, and portfolio value func-

tions. The dotted arrows imply maps via composition.

11



Glossary Acronyms

Glossary

layer-2 Layer two protocols leverage the security of a layer

one network to offer more transaction throughput at a

lower cost.

RMM-CC Primitive’s implementation of a CFMM that repli-

cates the payoff of a covered call, built on the FVM.

Acronyms

AMM Automated Market Maker

CFMM Constant Function Market Maker

DeFi Decentralized Finance

DEX Decentralized Exchange

EVM Ethereum Virtual Machine

FSM Finite State Machine

FVM Financial Virtual Machine

ISA Instruction Set Architecture

LP Liquidity Provider

LPT Liquidity Provider Token

RMM Replicating Market Maker

VM Virtual Machine

12


	Introduction
	Financial Virtual Machine
	Background on State Machines
	Theory
	Implementation
	Processing and Encoding

	Orderflow with FVM

	Automated Market Making
	CFMM Background
	Replicating Portfolios and RMMs
	RMM-CC

	Liquidity

	Glossary
	Acronyms

